FR-AgEncode: a French pilot project to enrich the annotation of livestock genomes

Tissue sampling procedure 4b

INRA Division of Animal genetics

This procedure describes the steps to be applied for storing frozen cells from testis, in the view of performing Hi-C assay.

It does not describe the anatomical procedure to isolate the organ.

Author: Hervé Acloque, herve.acloque@toulouse.inra.fr

May 2016

Fr-Agencode - Tissue sampling procedure 4b

The objective is to produce a snap-frozen pellet of around 5 million fixed cells per aliquot. **It has been applied only to testis cells.**

A. Cell dissociation (step time: around 1 hour)

- 1. Dissect the testis.
- Dilacerate the tissue with scalpel blades as fine as you can (the finest the best to remove blood and optimize dissociation). A few cm³ piece is sufficient to produce around 20-40 million of cells
- 3. Wash the pieces of testis with 20ml of PBS. Agitate well, decant and keep the supernatant on ice.
- 4. Add 15ml of StemPro Accutase previously warmed at 37°C to the testis pieces and incubate for **10 minutes** with moderate agitation in a waterbath at 37°C
- 5. Using a 10ml pipet and a pipet-aid (or sampling bulbs), pipet up and down 20 times to homogenize the suspension (if it is well done, you won't have problem to do it either with a 25ml pipet or better with a 10ml pipet)
- 6. Filter through a cell strainer of 70μ m into a 50ml tube (placed in ice to reduce Accutase activity).
- 7. Centrifuge at 250g for 5 minutes
- Remove the supernatant (and remaining blood cells covering the pellet) and add
 40 ml of DMEM without serum. Evaluate cell quality and count the cells
- 9. Centrifuge at 250g for 5 minutes
- 10. Remove the supernatant (and remaining blood cells covering the pellet) and resuspend at a concentration of 5 million/cells per 10ml of DMEM without serum

B. Cell Fixation (step time: around 40 minutes) (volumes are described for 5 million/cells)

- 1. Add 1% final of freshly opened formaldehyde to the growth medium (270μl of 37% formaldehyde for 10ml of medium).
- 2. Incubate for 10 minutes at room temperature (around 20°C).
- 3. Add 0.125M final Glycine to quench the fixative (1.1ml of glycine 1.25M for 10 ml of medium)
- 4. Incubate 5 minutes at RT and cool 5 minutes on ice.
- 5. Centrifuge the tubes at 250g for 5 minutes to pellet the cells
- 6. Aspirate the supernatant and wash the cell pellets with 5 ml ice cold PBS (with protease inhibitors)
- 7. Centrifuge at 250g 5 minutes to pellet the cells
- 8. Resuspend the cell in 1ml ice cold PBS (with protease inhibitors)
- 9. Transfer the cell to the storage tube (eppendorf 2ml)

- Check nuclei integrity: remove 10μl of cell suspension and add 10μl of Vectashield+DAPI +1μl of 10X Phalloidine-TRITC (500μg/ml). Place 10μl over a clean microscope slide and cover with a coverslip. Observe under an epifluorescence microscope.
- 11. Centrifuge at 250g 5 minutes to pellet the cells
- 12. Keep cell pellets on ice and discard the supernatant.
- 13. Flash freeze the pellets in liquid nitrogen and store at -80°C