

Aberdeen ChIP-seq protocol for Invivo and invitro

20.05.2021

Reagent	catalog no	supplier
L15	11415049	Gibco
FBS	FB100/500	Biosera
Heparin	H3393-10KU	Sigma
Pen/Strep	P4333-100ML	Sigma
Percoll	10232919	GE Health care
10xHBSS	H4641-500ML	Sigma
Na ₂ Co ₃	S7795-500G	Sigma
Molecular grade water	7732-18-5	Sigma
Sterile Syringe	Z683620	Sigma
Sterile 100um nylon mash	CC8111-0102	Starlab

Extraction media (500ml)		
Reagent	volume	
L15	490 ml	
2% FBS	9.95 ml	
0.1% heparin	500 ul	
Washing media (50ml)		
Reagent	volume	
L15	49.9ml	
0.1% FBS	50 ul	
0.1% heparin	50 ul	
Growth media (500ml)		
Reagent	volume	
L15	445 ml	
10% FBS	50 ml	
1%Pen/ Strep	5 ml	
51% Percoll (50ml)		

H2O	18.9 ml
Percoll	25.5 ml
10xHBSS	5 ml
Sodium bicarbonate (5M)	357 ul
Heparin (1ul/U)	50 ul

Tissue disruption and crosslinking

Tissue disruption

- 1. Dissect out the entire head kidney (using scalpel, tweezers and spatula) and put into a 50 mL tube (tube 1) containing 20 mL extraction media.
- 2. Take a 100 μ m nylon mesh and fit it onto a new 50 mL tube
- 3. Using a sterile pipette or tweezers, transfer the head kidney from the tube 1 and place it on nylon mesh.
- 4. Working gently, squeeze the head kidney though the 100 μm nylon mesh using the rubber end of the plunger from a 2 mL sterile syringe. Continually apply **extraction media** from tube 3 to prevent cells from drying out and assist with their transit through the mesh. NOTE: Be very gentle, head kidney tissue will break up quite easily, but this may take 10 minutes.
- 5. Make the final volume of the disrupted cell suspension to 20 mL using additional **extraction** media
- *At this stage disassociated cells can be used for ChIP and ATAC-seq protocol for complete head kidney cells not just leukocytes.
- *For leukocytes extraction follow "Separate leukocytes using a percoll gradient"

Separate leukocytes from erythrocytes using a percoll gradient

This is a delicate procedure and may require some practice.

- 6. Pipette 5 mL of 51% percoll into a 50 mL tube.
- 7. VERY gently layer 20 mL of the cell suspension from Step 9 onto the top of the percoll without causing the layers to mix.
- 8. Spin the tube for 30 min at 400g in a centrifuge pre-cooled to 4°C. NOTE: <u>Do not use a break on centrifuge!</u> It will take approximately 10 min to stop.
- 9. Handling the tube carefully so as not to disturb the stratification, use a 10 mL pipette or similar to carefully remove cells at the interface between Percoll and extraction media (these are the desired leukocytes) and transfer to a new 50 mL tube, expect to remove approx. 5 mL from the cell layer at interface. RBC will have pelleted to bottom of tube.
- 10. Adjust the volume of the collected leukocytes to 20 mL with washing media.
- 11. Decant the wash medium carefully, making sure not to discard the cell pellet. Repeat steps 10 and 11 once more to eliminate percoll completely.
- 12. Count the cells using haemocytometer and dilute to 1x106mL-1 and check viability with trypan blue (should be >90% viable). It is required to have a min 18x106 cells per fish for the 3 stimulations.

Crosslinking Head kidney tissue disassociated cells

- 13. Count cells from **step 5** and allocate (in 1.5ml tubes, safe lock tubes) the right number of cells needed the experiment (in this case 2 million)
- 14. Centrifuge 10 mins, 800 g, 4°C. Remove and discard supernatant
- 15. To the pellet, add 1ml of formaldehyde solution 1% and resuspend the pellet by pipetting
- 16. Incubate under constant rotation at room temperature for 5 mins
- 17. Quench the reaction with 125 μ l of glycine 1M (0.125M final). Incubate 10 mins, room temperature, under constant rotation
- 18. Centrifuge 5 mins, 1000 g, 4°C. Remove and eliminate in appropriate trash the supernatant
- 19. Resuspend with 1ml of 1x PBS with PIC by pipetting (quick vortex if necessary). Centrifuge 5 mins, 1000 g, 4°C. Remove the supernatant

Crosslinking Head kidney Leukocytes

- After **step 12**, plate right number of cells in each well and incubate at 24°C for 24 hours. Aim for 1 million cells in 1ml of growth media
- After 24 hours, using a cell scraper, scrap the bottom of each well making sure all the cells that are stuck on the bottom of the well are resuspended. Transfer the cells in a 2ml tube
- For crosslinking follow the **steps from 14-19**

After cross linking cell pellets were stored at -80°C until further use.

Instruction for the next step for ChIP libaray preparations were followed from the diagenode Chimpenation for histone kit (C01011009).