
 GENE-SWitCH – Protocols

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 817998

GENE-SWitCH
The regulatory GENomE of SWine and CHicken: functional annotation during

development

Protocol WP2
Chicken gene annotation with Isoseq sequencing using

isoseq nextflow pipeline and downstream analysis.

Authors: Sébastien Guizard (UEDIN)

Workpackage: WP2

Version: 1.0

Research and Innovation Action, SFS-30-2018-2019-2020 Agri-Aqua Labs

Duration of the project: 01 July 2019 – 30 June 2023, 48 months

Protocol associated with Deliverable(s): D2.1 D2.2

Submission date to FAANG: 23/03/2022

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 2 | 11

Table of contents

1 Summary ... 4

2 Protocol description ... 5

2.1 Genome annotation .. 5

2.2 Read count computing .. 7

2.3 Long Non Coding RNA detection ... 10

2.4 Add Ensembl IDs .. 10

2.5 Add information to GTF file ... 10

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 3 | 11

Table of figures

Figure 1: Isoseq nexflow pipeline5
Figure 2: Read counting process8

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 4 | 11

1 Summary

GENE-SWitCH aims at identifying functional elements located in the genomes of the pig and
chicken working on seven different tissues at three different developmental stages.

The seven tissues analysed in GENE-SWitCH are:

- Cerebellum

- Lung

- Kidney

- Dorsal skin

- Small intestine

- Liver

- Skeletal muscle

The three developmental stages are:

- Early organogenesis (E8 chick embryo and D30 pig foetuses)

- Late organogenesis (E15 chick embryo and D70 pig foetuses)

- Newborn piglets and hatched chicks

For each tissue at each time point, an Isoseq long read sequencing has been done. The raw
subreads needs to be processed to generates definitive consensus sequences. The reads are
mapped on the reference genome with uLTRA. The gene models are cleaned with TAMA. The
resulting annotation files have to be processed to convert to the GFF format and add
information (read count, annotation confidence).

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 5 | 11

2 Protocol description

The following protocol has been applied on either chicken and pig isoseq datasets.

2.1 Genome annotation

The isoseq raw subreads processing, the genome mapping and the gene model annotation
creation are made using the isoseq nextflow pipeline.

First the pipeline generates Circular Consensus Sequences (CCS) using ccs Pacbio’s

program. The raw data are divided into batches of sequences that are processed in parallel.
On each ccs batch, the program LIMA (from Pacbio) select CCS with appropriate primers pairs

and removes them from the sequence. The resulting sequences are then processed by
Pacbio’s isoseq3 refine. It selects non-chimeric sequences with poly(A) tail. The sequences

in BAM format are converted into FASTA format using bamtools convert. The program

polyacleanup from TAMA is then apply to remove remaining polyA tails. At the end of the

cleaning process, sequences are called Full Length Non Chimeric (FLNC).

Each batch of FLNC is aligned on the reference genome with the program uLTRA.

Each alignment is processed by TAMA collapse, for false positive and redundancy removing.

A bed annotation file is generated for each batch of sequences. Those batches are regrouped
based on their sample of origin and merge into one annotation by TAMA merge.

Figure 1: Isoseq nexflow pipeline

https://github.com/FAANG/analysis-isoseq

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 6 | 11

To run the pipeline, a data directory is created and the following input files are stored in it:

- Samples subreads (.bam)

- Pacbio index files (.bam.pbi)

- Reference genome (.fasta)

- Primer sequences (.fasta)

- Ensembl gene annotation (.gtf)

The genome used is Gallus Gallus 6 (GRCg6a) and its gene annotation from Ensembl release-
105. Contrary to PacBio’s instructions, the primer sequence remains unmodified and the polyA
sequence is conserved:

>5p
TGGATTGATATGTAATACGACTCACTATAG
>3p
AAAAAAAAAAAAAAAAAACGCCTGAGA

The following command line has been used to run the pipeline on each samples:

nextflow run sguizard/isoseq \
-r dev-rkv-eddie \
--input ../data/ \
--primers ../data/primers_complete.fasta \
--fasta ../data/Gallus_gallus.GRCg6a.dna.toplevel.fa \
--chunk 300 \
--rq 0.90 \
--min_passes 2 \
--five_prime 2000 \
--splice_junction 10 \
--three_prime 2000 \
--capped \
--ultra \
--gtf ../data/Gallus_gallus.GRCg6a.105.gtf \
-profile singularity,eddie

The files 30 bed files obtained for the 21 pairs of tissues/development stages have been
merged together using TAMA merge.

tama_merge.py -f inputChicken.tsv -d merge_dup -a 2000 -m 10 -z 2000 -p chicken 1>
merge.log 2> merge.err

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 7 | 11

The “inputChicken.tsv” file is a four-column tabulation separated file. It contains the list of

annotation to merge (column 1), the indication if the sequenced RNAs were capped (column
2), the priority annotation merging (column 3), and an id (column 4).

E15_Skin_P2_cleaned.bed capped 1,1,1 E15_Skin_P2
HC_Lung_cleaned.bed capped 1,1,1 HC_Lung
E8_Brain_cleaned.bed capped 1,1,1 E8_Brain
HC_Skin_P1_cleaned.bed capped 1,1,1 HC_Skin_P1
E15_Skin_P1_cleaned.bed capped 1,1,1 E15_Skin_P1
E15_Muscle_P1_cleaned.bed capped 1,1,1 E15_Muscle_P1
HC_Liver_P2_cleaned.bed capped 1,1,1 HC_Liver_P2
HC_Brain_P1_cleaned.bed capped 1,1,1 HC_Brain_P1
E15_Liver_cleaned.bed capped 1,1,1 E15_Liver
HC_Muscle_cleaned.bed capped 1,1,1 HC_Muscle
E8_Liver_cleaned.bed capped 1,1,1 E8_Liver
E8_Lung_cleaned.bed capped 1,1,1 E8_Lung
HC_Skin_P2_cleaned.bed capped 1,1,1 HC_Skin_P2
E8_Muscle_cleaned.bed capped 1,1,1 E8_Muscle
HC_Liver_P1_cleaned.bed capped 1,1,1 HC_Liver_P1
E15_Brain_P1_cleaned.bed capped 1,1,1 E15_Brain_P1
E8_Ileum_cleaned.bed capped 1,1,1 E8_Ileum
E15_Kidney_P1_cleaned.bed capped 1,1,1 E15_Kidney_P1
E8_Skin_cleaned.bed capped 1,1,1 E8_Skin
E15_Lung_P1_cleaned.bed capped 1,1,1 E15_Lung_P1
E15_Lung_P2_cleaned.bed capped 1,1,1 E15_Lung_P2
HC_Ileum_P1_cleaned.bed capped 1,1,1 HC_Ileum_P1
HC_Brain_P2_cleaned.bed capped 1,1,1 HC_Brain_P2
E15_Kidney_P2_cleaned.bed capped 1,1,1 E15_Kidney_P2
E15_Muscle_P2_cleaned.bed capped 1,1,1 E15_Muscle_P2
E15_Ileum_cleaned.bed capped 1,1,1 E15_Ileum
HC_Kidney_cleaned.bed capped 1,1,1 HC_Kidney
HC_Ileum_P2_cleaned.bed capped 1,1,1 HC_Ileum_P2
E8_Kidney_cleaned.bed capped 1,1,1 E8_Kidney
E15_Brain_P2_cleaned.bed capped 1,1,1 E15_Brain_P2

The combined bed file has been converted to GTF format is using TAMA script

tama_convert_bed_gtf_ensembl_no_cds.py.

tama_convert_bed_gtf_ensembl_no_cds chicken.bed chicken.gtf

The GTF file has been modified to add:

• The number of reads supporting each transcript annotation or ‘read count’

• The results of lncRNA detection with feelnc

• Ensembl ids for already annotated genes and transcripts

• Annotations sample of origin

2.2 Read count computing

TAMA include a python script dedicated to read count computing. By running it after each TAMA
collapse or TAMA merge, it’s possible to keep track of read count through the

cleaning/merging process. In this case, tama_read_support_levels.py has been run after

pipeline’s TAMA collapse (one bed file per read batch), pipeline’s TAMA merge (one bed file

per sample), and the last TAMA merge (one bed file for all samples).

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 8 | 11

Figure 2: Read counting process – Purple bar indicates programs launch by the pipeline; others are
launched manually. A) TAMA read support is launched on each trans_reads.bed files produced by

TAMA collapse. B) TAMA read support is run on each sample merge.txt their associated chromosome
read_support file. C) TAMA read support is run on the merge.txt of all samples with their associated

sample read_support files

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 9 | 11

The first counting needs to be run on each trans_read.bed files produced by TAMA
collapse (Fig 2. A). For each of them, a read_support file is created. If all trans_read.bed

files are gathered in the same directory, the following fish shell loop will run the script on

each of them:

for FILE in (find 09_GSTAMA_COLLAPSE/ -name '*_trans_read.bed')
 set FILE_SHORT (string replace -r '^.+/' '' $FILE)
 set ID (string replace "_trans_read.bed" "" $FILE_SHORT)
 set OUTFILE $ID"_"filelist.txt
 echo -e "$ID\t$FILE\ttrans_read" > $OUTFILE
 set CMD "tama_read_support_levels.py -f $OUTFILE -m no_merge -o $ID"
 echo $CMD
 eval $CMD
end

At each loop iteration, it will create a filelist.tsv input file composed of three tabulations

separated columns (an ID, the trans_read.bed file and the file type) and run

tama_read_support_levels.py.

Next, the generated read_support files are used to compute the read count at sample level

(first TAMA merge). For each sample, a filelist.tsv file listing read_support files must be

created. The first column is the ID, the second is the file path and the third one contains
read_support as file type. The script can be started with following command:

for ID in (ls /*_read_support.txt|perl -pe 's/.+\///; s/\..+txt//g'|sort|uniq)
 set INPUT $ID"_input.tsv"

 for RS in (ls ../01-read_support_collapse/$ID*_read_support.txt)
 set ID2 (echo $RS|perl -pe 's/\.\.\/01-read_support_collapse\///g;
s/_read_support.txt/_collapsed.bed/g')
 echo -e "$ID2\t$RS\tread_support" >> $INPUT
 end

 set MERGE $ID"_merge.txt"
 set CMD "ln -sf ../../05-merging_files/02-merge.txt_by_samples/"$MERGE
 eval $CMD
 set CMD "tama_read_support_levels.py -f $INPUT -m $MERGE -o $ID"
 echo $CMD
 eval $CMD
end

Finally, the global read count can be computed using the read_support files generated for

each sample. A fish shell loop can be used to generate the file list file. The
tama_read_support_levels.py is run using the resulting filelist file and the
merge.txt generated during TAMA merge process.

for RS in (ls ../02-read_support_merge1/*_read_support.txt)
 set ID (string replace -r '_read_support.txt' '' $RS|string replace -r '\.\.\/02-
read_support_merge1\/' '')
 echo -e "$ID\t$RS\tread_support" >> chicken_input.tsv
end

ln -s ../../04-merge_annotations/chicken_merge.txt

tama_read_support_levels.py -f chicken_input.tsv -m chicken_merge.txt -o chicken

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 10 | 11

2.3 Long Non Coding RNA detection

The program feelnc perform Long Non-Coding RNA (lncRNA) detection with an alignment-free method.

By analysing nucleotide compositional bias of coding and non-coding regions of the genome, the

program can infer the transcript coding status.

A nextflow pipeline (sguizard/nf-feelnc) has been developed, based on FAANG/analysis-TAGADA

pipeline, to run all feelnc analysing steps. The program has been applied on the final annotation, with

same genome and reference annotation used for isoseq annotations.

nextflow run sguizard/nf-feelnc \
-r dev \
--ref_annotation Gallus_gallus.GRCg6a.105.gtf \
--new_annotation chicken.gtf \
--genome Gallus_gallus.GRCg6a.dna.toplevel.fa \
-profile singularity,eddie

2.4 Add Ensembl IDs

The TAMA merge program offer the possibility to keep the ids from one source when two annotations

are merged. To detect genes already annotated, ensembl annotation has been merge to isoseq

annotation.

tama_format_gtf_to_bed12_ensembl.py \
Gallus_gallus.GRCg6a.105.gtf \
Gallus_gallus.GRCg6a.105.bed > format.log > format.err

echo -e "chicken_clean.bed\tcapped\t1,1,1\tisoseq" >> inputEnsembl.tsv
echo -e "Gallus_gallus.GRCg6a.105.bed\tcapped\t1,1,1\tensembl" >> inputEnsembl.tsv

tama_merge.py \
-f inputEnsembl.tsv \
-d merge_dup \
-a 2000 \
-m 10 \
-z 2000 \
-p chicken_ensembl \
-cds ensembl \
-s ensembl 1> merge.log 2> merge.err

2.5 Add information to GTF file

The first step has been to link read count, Ensembl IDs, feelnc biotype and samples origin to
each isoseq annotation. The R script link_readCount_EnsIDs_sourceLine.R generates a modified

bed files gathering the required information using:

• isoseq and Ensembl merged annotations (chicken_ensembl.bed)

• trans_report.txt file generated at isoseq and Ensembl annotations

(chicken_ensembl_trans_report.txt)

• the read count file (chicken_read_support.txt)

• feelnc annotation (novel.gtf)

https://github.com/sguizard/nf-feelnc
https://github.com/FAANG/analysis-TAGADA
https://github.com/sguizard/bioinfo-scripts/blob/master/TAMA_annotation/link_readCount_EnsIDs_sourceLine.R

GENE-SWitCH – Protocols

L I F T - H 2 0 2 0 P a g e 11 | 11

The compiled information has been incorporated to the isoseq GTF file with a simple R script.

library(tidyverse)

read_gff <- function(file) {require(readr);read_tsv(file,col_names = c("sequence",
"source", "feature","start", "end", "score", "strand", "phase", "attributes"),
col_types = cols(sequence = "c", source = "c", feature = "c", start = "i", end =
"i", score = "c", strand = "c", phase = "c", attributes = "c"), comment = "#")}

gtf <-
 read_gff('chicken.gtf') %>%
 mutate(transcript_id = str_extract(attributes, 'G\\d+\\.\\d+'))

d <- read_tsv(
 'chicken_ensembl_all_info.bed',
 col_types = cols(
 'chrom' = "c", 'chromStart' = "i", 'chromEnd' = "i",
 'name' = "c", 'score' = "c", 'strand' = "c",
 'thickStart' = "c", 'thickEnd' = "c", 'itemRgb' = "c",
 'blockCount' = "i", 'blockSizes' = "c", 'blockStarts' = "c",
 'tama_gene_id' = "c", 'tama_transcript_id' = "c", 'ens_gene' = "c",
 'ens_transcript' = "c", 'sources' = "c", 'old_id' = "c",
 'feelnc_biotype' = "c", 'trans_read_count' = "i",
 'source_line' = "c")) %>%
 select(ens_gene:source_line) %>%
 filter(sources %in% c('isoseq', 'ensembl,isoseq')) %>%
 rename(transcript_id = old_id)

left_join(gtf, d) %>%
 select(-transcript_id, -sources) %>%
 mutate(
 attributes = str_replace(attributes, ';$', ''),
 ens_gene = paste0('ens_gene "', ens_gene, '\"'),
 ens_transcript = paste0('ens_transcript "', ens_transcript, '\"'),
 feelnc_biotype = paste0('feelnc_biotype "', feelnc_biotype, '\"'),
 trans_read_count = paste0('trans_read_count "', trans_read_count, '\"'),
 source_line = paste0('source_line "', source_line, '\"')) %>%
 unite(attributes, attributes:source_line, sep = '; ') %>%
 write_tsv(
 'Chicken_isoseq-annotation.gtf',
 col_names = FALSE,
 quote = 'none',
 escape = 'none')

