

GENE-SWitCH – Protocols

GENE-SWitCH

The regulatory GENomE of SWine and CHicken: functional annotation during development

Protocol WP2 Gene annotation with Isoseq sequencing using isoseq nextflow pipeline and downstream analysis.

Authors: Sébastien Guizard (UEDIN)

Workpackage: WP2

Version: 1.0

Protocol associated with Deliverable(s):	D2.1 D2.2	
Submission date to FAANG:	08/12/2021	

Research and Innovation Action, SFS-30-2018-2019-2020 Agri-Aqua Labs Duration of the project: 01 July 2019 – 30 June 2023, 48 months

Table of contents

Tab	le of contents	2
1	Summary	4
2	Protocol description	5

Table of figures

Figure 1: Isoseq nexflow pipeline	. 5
Figure 2: Read counting process	. 8

1 Summary

GENE-SWitCH aims at identifying functional elements located in the genomes of pig and chicken working on seven different tissues at three different developmental stages.

The seven tissues analysed in GENE-SWitCH are:

- Cerebellum
- Lung
- Kidney
- Dorsal skin
- Small intestine
- Liver
- Skeletal muscle

The three developmental stages are:

- Early organogenesis (E8 chick embryo and D30 pig foetuses)
- Late organogenesis (E15 chick embryo and D70 pig foetuses)
- Newborn piglets and hatched chicks

For each tissue at each time point, an Isoseq long read sequencing has been done. The raw subreads needs to be processed to generates definitive consensus sequences. The reads are mapped on the reference genome with uLTRA. The gene models are cleaned with TAMA. The resulting annotation files have to be processed to convert to the GFF format and add information (read count, annotation confidence).

2 Protocol description

The isoseq raw subreads processing, the genome mapping and the gene model annotation creation are made using the <u>isoseq nextflow pipeline</u>.

First the pipeline generates CCS using ccs Pacbio's program. The raw data are divided into batches of sequences that are processed in parallel. On each ccs batch, the program LIMA (from Pacbio) select CCS with appropriate primers pairs and removes them from the sequence. The resulting sequences are then processed by Pacbio's isoseq3 refine. It selects non-chimeric sequences with poly(A) tail, and trim it. The produces sequences are called Full Length Non Chimeric (FLNC). Before the clustering step, the sequence batches are merged using with Pacbio's pbmerge program. Next, the program isoseq3 cluster regroups similar sequences and create a consensus, called HIFI, for each cluster.

Before proceeding to the mapping, the not clustered FLNC and HIFI are merged using pbmerge and a fastq file is created using samtools fastq. The set of reads is aligned on the reference with the program uLTRA.

To accelerate the computations, the resulting alignment is split based on the chromosome with bamtools split. Each alignment is processed by TAMA collapse, for false positive and redundancy removing. To finish, the complete set of annotation bed files is merged in one unique bed file with TAMA merge.

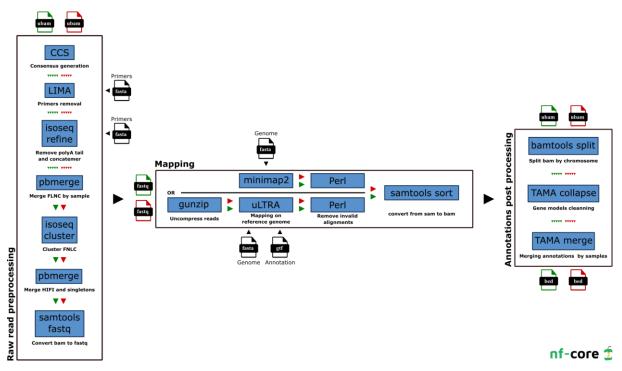



Figure 1: Isoseq nexflow pipeline

To run the pipeline, a data directory is created and the following input files are stored in it:

- Samples subreads (.bam)
- Pacbio index files (.bam.pbi)
- Genome (.fasta)
- Primer sequences (.fasta)
- Ensembl gene annotation (.gtf)

The genome used is Gallus Gallus 6 (GRCg6a) and its gene annotation from Ensembl release-104. The primers used are:

The complete command line is:

The files 31 bed files obtained for the 21 pairs of tissues/development stages have been merged together using TAMA merge.

tama_merge.py -f 31samples_filelist.tsv -d merge_dup -a 2000 -m 10 -z 2000 -p
31SamplesFiles 1> merge.log 2> merge.err

The "31samples_filelist.tsv" file is a four-column tabulation separated file. It contains the list of annotation to merge (column 1), the indication if the sequenced RNAs were capped (column 2), the priority annotation merging (column 3), and an id (column 4).

merged_m64036_210413_213334.subreads.bed	capped	1,1,1	E8Brain
merged_m64036_210319_151149.subreads.bed	capped	1,1,1	E8Ileum
merged_m64036_210320_212651.subreads.bed	capped	1,1,1	E8Kidney
merged_m64036_210315_182820.subreads.bed	capped	1,1,1	E8Liver
merged_m64036_210322_035446.subreads.bed	capped	1,1,1	E8Lung
merged_m64036_210412_151836.subreads.bed	capped	1,1,1	E8Muscle
merged_m64036_210415_040208.subreads.bed	capped	1,1,1	E8Skin
merged_m64036e_210713_144608.subreads.bed	capped	1,1,1	E15BrainP2
merged_m64036e_210719_150424.subreads.bed	capped	1,1,1	E15BrainP1
merged_m64036_210622_160059.subreads.bed	capped	1,1,1	E15Ileum
merged_m64036_210623_220011.subreads.bed	capped	1,1,1	E15KidneyP2
merged_m64036_210630_203419.subreads.bed	capped	1,1,1	E15KidneyP1
merged_m64036_210418_013328.subreads.bed	capped	1,1,1	E15Liver
merged_m64036_210702_024547.subreads.bed	capped	1,1,1	E15LungP1
merged_m64036_210625_041134.subreads.bed	capped	1,1,1	E15LungP2
merged_m64036_210626_102305.subreads.bed	capped	1,1,1	E15MuscleP2
merged_m64036_210703_085717.subreads.bed	capped	1,1,1	E15MuscleP1
merged_m64036e_210714_204516.subreads.bed	capped	1,1,1	E15SkinP2
merged_m64036e_210803_155018.subreads.bed	capped	1,1,1	E15SkinP1
merged_m64036e_210828_025255.subreads.bed	capped	1,1,1	HCBrainP1
merged_m64036e_210909_045748.subreads.bed	capped	1,1,1	HCBrainP2
merged_m64036e_210717_090846.subreads.bed	capped	1,1,1	HCIleumP2
merged_m64036e_210806_040105.subreads.bed	capped	1,1,1	HCIleumP1
merged_m64036e_210812_170130.subreads.bed	capped	1,1,1	HCKidney
merged m64036e 210716 025706.subreads.bed	capped	1,1,1	HCLiverP2
merged_m64036e_210804_214905.subreads.bed	capped	1,1,1	HCLiverP1
merged_m64036e_210815_202444.subreads.bed	capped	1, 1, 1	HCLung
merged_m64036e_210907_224558.subreads.bed	capped	1, 1, 1	HCMuscleP2
merged_m64036e_210826_204115.subreads.bed	capped	1,1,1	HCMuscleP1
merged m64036e 210829 090412.subreads.bed	capped	1, 1, 1	HCSkinP1
merged m64036e 210910 110947.subreads.bed	capped	1, 1, 1	HCSkinP2

The combined bed file has been converted is using TAMA script tama_convert_bed_gtf_ensembl_no_cds.py.

tama_convert_bed_gtf_ensembl_no_cds.py 31SamplesFiles.bed 31SamplesFiles.gtf

The GTF file has been updated to include a confidence attribute. The two possible values for this attribute are "low" and "high". If an annotation is supported by only one FLNC, the confidence is set to "low". If an annotation is supported by at least 2 FLNC or one HIFI, the confidence is set to "high". This modification has been made with two homemade R scripts: <u>get_low_high_confidence_annotations.R</u> and <u>add_confidence_annotation.R</u>.

The GTF file has been also modified to add the read count for each transcript. The read count of an annotation is the sum of FLNC supporting this annotation. If the annotation is supported by an HIFI, then the read count is incremented by the number of FLNC used to create this HIFI.

TAMA include a python script dedicated to read count computing. By running it after each TAMA collapse or TAMA merge, it's possible to keep track of read count through the cleaning/merging process. In this case, tama_read_support_levels.py has been run after pipeline's TAMA collapse (one bed file per chromosome per sample), pipeline's TAMA merge (one bed file per sample), and the last TAMA merge (one bed file for all samples).

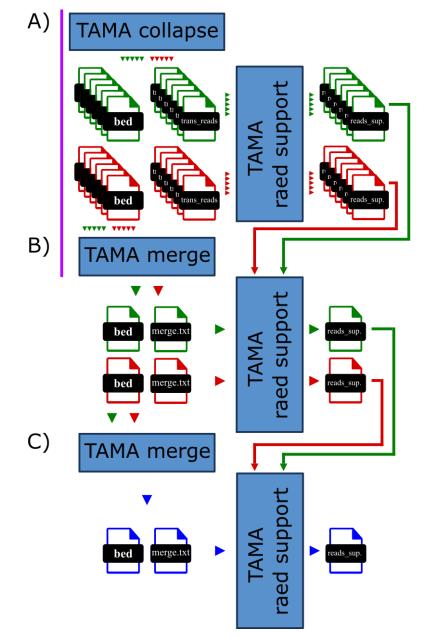


Figure 2: Read counting process – Purple bar indicates programs launch by the pipeline, others are launched manually. A) TAMA read support is launched on each trans_reads.bed files produced by TAMA collapse. B) TAMA read support is run on each sample merge.txt their associated chromosome read_support file. C) TAMA read support is run on the merge.txt of all samples with their associated sample read_support files

The first counting needs to be run on each trans_read.bed produced by TAMA collapse (Fig 2. A). For each of them, a read_support file is created. If all trans_read.bed files are gathered in the same directory, the following fish shell loop will run the script on each of them:

```
for i in (ls *.bed)
   set FILE $i
   set ID (string replace "_tc_trans_read.bed" "" $FILE)
   set FILELIST $ID"_"filelist.txt
   echo -e "$ID\t$FILE\ttrans_read" > $FILELIST
   set CMD "tama_read_support_levels.py -f $FILELIST -m no_merge -o $ID"
   echo $CMD
   eval $CMD
end
```


At each loop round, it will create a filelist.tsv input file composed of three tabulations separated columns (an ID, the trans_read.bed file and the file type) and run tama_read_support_levels.py.

Next, the generated read_support files are used to compute the read count at sample level (first TAMA merge). For each sample, a filelist.tsv file listing read_support files must be created. The first column is the ID, the second is the file path and the third one contains read_support as file type. The script can be started with following command:

```
tama_read_support_levels.py \
-f <SAMPLE>_filelist.tsv \
-m <SAMPLE>_merge.txt \
-o <SAMPLE>
```

Finally, the global read count can be computed using the read_support files generated for each sample. The filelist.tsv list sample's read_support files:

I		_ ''
E15BrainP1	E15BrainP1_read_support.txt	read_support
E15BrainP2	E15BrainP2_read_support.txt	read_support
E15Ileum	E15Ileum_read_support.txt	read_support
E15KidneyP1	E15KidneyP1_read_support.txt	read_support
E15KidneyP2	E15KidneyP2_read_support.txt	read_support
E15Liver	E15Liver_read_support.txt	read_support
E15LungP1	E15LungP1_read_support.txt	read_support
E15LungP2	E15LungP2_read_support.txt	read_support
E15MuscleP1	E15MuscleP1_read_support.txt	read_support
E15MuscleP2	E15MuscleP2_read_support.txt	read_support
E15SkinP1	E15SkinP1_read_support.txt	read_support
E15SkinP2	E15SkinP2_read_support.txt	read_support
E8Brain	E8Brain_read_support.txt	read_support
E8Ileum	E8Ileum_read_support.txt	read_support
E8Kidney	E8Kidney_read_support.txt	read_support
E8Liver	E8Liver_read_support.txt	read_support
E8Lung	E8Lung_read_support.txt	read_support
E8Muscle	E8Muscle_read_support.txt	read_support
E8Skin	E8Skin_read_support.txt	read_support
HCBrainP1	HCBrainP1_read_support.txt	read_support
HCBrainP2	HCBrainP2_read_support.txt	read_support
HCIleumP1	HCIleumP1_read_support.txt	read_support
HCIleumP2	HCIleumP2_read_support.txt	read_support
HCKidney	HCKidney_read_support.txt	read_support
HCLiverP1	HCLiverP1_read_support.txt	read_support
HCLiverP2	HCLiverP2_read_support.txt	read_support
HCLung	HCLung_read_support.txt	read_support
HCMuscleP1	HCMuscleP1_read_support.txt	read_support
HCMuscleP2	HCMuscleP2_read_support.txt	read_support
HCSkinP1	HCSkinP1_read_support.txt	read_support
HCSkinP2	HCSkinP2_read_support.txt	read_support

The last tama_read_support_levels.py is launched with this following command:

tama_read_support_levels.py -f input_filelist.tsv -m 31SamplesFiles_merge.txt -o
31SamplesFiles

The global read count must be corrected to include the number of FLNC for each HIFI. This information can be obtained by running tama_read_support_levels.py on the cluster report generated by isoseq3 cluster. When all cluster_report.csv files are gathered in a directory, the script can be run using the following fish shell loop:

All the complete set of read_support is merged into one file before read_count correction.

The read count correction is made using a homemade R script: count_correction.R